Tuesday, March 1, 2016

Feb 19 - Ripples in Spacetime


A record crowd packed into the lecture hall tonight to hear Jillian Bellovary talk about gravitational waves and how to detect them. Jillian's research focuses on supercomputer simulations of supermassive black hole binaries, but her presentation focused on much less massive binaries like those whose merger was detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in September. Gravitational waves are very small distortions in spacetime caused when massive objects are accelerated to high speeds. The distortions measured by LIGO were smaller than the radius of a proton -- and those were caused by two ~30 solar mass black holes merging together. Jillian showed simulations of how these ripples in spacetime are created by the two merging black holes.

Jillian also described how LIGO was able to detect these tiny distortions. LIGO is an interferometer, meaning it measures how light waves interfere with each other (either adding together or canceling each other out) after they travel a very long distance in two perpendicular directions. How the interference pattern changes with time tells LIGO scientists how the distance is changing in each direction. If the "arms" of the interferometer lengthen and compress in a particular pattern, then they know they've detected a gravitational wave!


The sky was cloudy, but graduate students Adrian Price-Whelan and Lauren Corlies, along with undergraduates Amanda Quirk and Cierra Coughlin, showed off the Rutherfurd Observatory. Meanwhile, undergraduates Richard Nederlander and Tze Goh screened short films on the 3D Wall. In the lecture hall, volunteers Stephanie Douglas, Maria Charisi, and Danielle Rowland played videos from PhD comics and from members of the LIGO team at CalTech, and answered audience questions about gravitational waves.

--Stephanie Douglas (graduate student)

No comments:

Post a Comment